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PARAMETER ESTIMATION AND TARGET DETECTION IN
A DISTRIBUTED-CLUTTER ENVIRONMENT

INTRODUCTION

The three basic purposes of a radar are target detection, target resolution, and parameter estima-
tion. For a single target, the tasks of target detection and parameter estimation are in principle quite
simple if sufficient signal energy guarantees precise measurements of target range, velocity, and other
parameters. The real test of a radar is its ability to resolve the desired targets from clutter and to detect
targets and estimate parameters simultaneously in the presence of clutter. The mutual interference
caused by other scatterers will in general make target resolution difficult.

Any response of a practical receiver always has a main peak surrounded by several time sidelobes
or slowly decreasing tails. In an environment with distributed clutter or multiple targets, the sum of all
these low-level responses may build up to a level sufficiently high so as to mask even relatively strong
targets. It has been stated [11 that parameter estimation is one of the fundamental applications of large
time-bandwidth signals. It is generally believed that the optimum implementation for parameter esti-
mation is a bank of matched filters obtained by doppler-correcting a nonrange-doppler-coupled pulse
compressor [1,21. Although this is true in the absence of clutter, this report demonstrates that the
doppler filter bank described above cannot provide subclutter visibility in a distributed-clutter environ-
ment. In such an environment the clutter will mask the targets, preventing both target detection and
parameter estimation.

The implementation of a moving-target indicator (MTI) at each output port of a doppler-steered
pulse compressor can eliminate the excess clutter (to be defined later), but the radar will require at
least two transmitted pulses and will operate with blind-speed limitations. As will be described, for two
or more pulses when the proper waveforms are employed, radar performance can be improved
significantly in distributed nonmoving clutter. Both subclutter visibility and accurate parameter estima-
tion can be achieved at the same time.

CODES WITH A THUMBTACK-TYPE AMBIGUITY FUNCTION

It has been stated [1) that the simultaneous measurement of the range and velocity of a radar tar-
get (parameter estimation) is accomplished with minimum error when the waveform employed does not
range-doppler couple. The thumbtack-type ambiguity function, with a narrow spike surrounded by a
uniformly low pedestal, is usually considered for parameter-estimation applications.

The aperiodic maximum-length binary shift-register codes have an ambiguity function which
approximates a thumbtack type of characteristic. These codes are derived from recurrence formulas
which are suitable for shift-register implementation 131. The coefficients of the primitive polynomial of
degree n specify the stages used in the feedback path. Codes of length 2R-I are generated by sensing
predetermined stages of the n-bit shift register and summing modulo 2, with the result applied to the
input of the shift register. When code generation starts, different initial conditions with binary ele-
ments in the shift register will yield cyclic permutation of the code. Among these permutations, there
are codes with either the lowest peak sidelobes or the lowest RMS sidelobes. In addition to the
maximum-length binary codes, Barker codes also have thumbtack-type ambiguity functions. However,
no known Barker code exists with length greater than 13.
Manuscripi approved December 2. 1982.



LIN, LEWIS. AND KRETSCHMER. JR.

In the matched-filter-bank implementation for parameter estimation, each filter in the bank is
tuned to a different center frequency (doppler-steered pulse compressor). For a maximum-lenb'h-
sequence and Barker-coded waveforms, a doppler shift of m/,r (m - integer, r- code duration)
reduces all the matched-filter peak responses to the sidelobe level, except the F filter, which is the
filter matched to the doppler shift of the received signal. Under the latter condition a peak response is
obtained; its location indicates the true range, and the filter number identifies the target velocity. The
responses of the F0 ,FIF 2, and F3 doppler filters with a zero-doppler target are shown in Fig. I for one
of the 127-element-maximum-length pseudorandom binary waveforms and in Fig. 2 for the 13-element
Barker code. The responses of the F0,F,,F 2, and F3 filters with an F 2-doppler target (with a doppler
shift of 2/7) are shown in Fig. 3 for the same maximum-length binary code as in Fig. 1.
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40 1i640
0 64 126 192 256 0 64 126 192 254

SAMPLE NUMBER SAMPLE NUMBER

Fig. I - Responses of the doppler filters with a zero-doppler target for a
127-element-maximun-lenish binary code: (217g, 127)

DISTRIBUTED-NONMOVING-CLUTTER ENVIRONMENT

In a distributed-clutter environment, the range extent of the clutter is assumed to be much
greater than the transmitted pulse duration. For the distributed clutter, it is assumed that the I and Q
components of clutter cells are independently Gaussian distributed with zero mean and equal variance.
Therefore, the amplitudes of clutter cells are Rayleigh distributed, and the phases are uniformly distri-
buted. The responses for one realization of the nonmoving-distributed-clutter model were obtained at
outputs of doppler-steered pulse compressors when several maximum-length binary-sequence and
Barker codes were adopted for input waveforms. The mean-squared output clutter powers from the
doppler-steered pulse compressors employing these waveforms are listed in Table I for the
F0 ,F,,F2, and F3 filters. The results consistently show that the clutter power effectively comes through

p all the doppler-steered passbands on the range-time sidelobes with nearly as much power as that at the
* matchpoint in the zero-frequency passband. This integrated time-sidelobe power has been called excess

clutter and gives rise to what has been called processing loss or degradation 141. Work to date has
revealed that no codes with a thumbtack-type ambiguity function in the implementation of doppler-
corrected pulse compressors will provide subclutter visibility in the presence of nonmoving distributed
clutter.
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Table I - Mean-Squured Clutter Level Output from
Doppler-Steered Pulse Compressors

Mean-Squared Clutter Level (dB)
Waveform

FO F, F2  F3

13-Element Barker code 0.471 0.164 0.087 0.260
15-Element-maximum-length binary code*

(23,, 1)" 1.501 0.482 -0.119 0.217
31-Element-maximum-length binary code

(45g, 20)' 1.103 0.135 -0.058 -0.029
(458, 4) t  1.379 0.143 -0.059 0.099

63-Element-maximum-length binary code
(1038, 31)'f 1.186 0.103 0.168 0.008

127-Element-maximum-length binary code
(211 s , 39) 0.875 -0.138 -0.099 0.131
(2178, 127)' 1.211 0.088 0.172 0.225
(203,, 64) 1.385 -0.516 0.143 0.122
(293s, 1) 1.494 -0.510 0.093 0.207

*The maximum length binary codes are represented by (as. 0), where a is the coefficient of primi-
tive polynomial in octal notation and 0 is the initial condition in binary notation.
'Code with the lowest peak sidelobe.
tCode with the lowest RMS sidelobe.

Note: The initial conditions derived for those codes wth either the lowest peak sidelobes or the
lowest RMS sidelobes are different from those obtained by Taylor and MacArthur 131.

MTI DELAY-LINE CANCELERS

To eliminate the excess clutter, two or more successive echoes from each doppler passband must
be subtracted in an MTI (Fig. 4). This prevents the system from parameter estimation with a single
pulse. The delay-line canceler acts as a filter which not only rejects the DC component but also elim-
inates any moving target whose doppler frequency is the same as the pulse-repetition frequency (PRF)
or an integer multiple therof. This gives rise to a blind-speed problem as in a conventional MTI radar.

RANGE-DOPPLER-COUPLED WAVEFORM SYSTEM

When at least two pulses are dedicated to the MTI, it is no longer necessary to employ waveforms
with thumbtack ambiguity diagrams for accurate parameter estimation. For example, a variation of an
MTI technique that takes advantage of the range-doppler-coupling effect could be used. This effect
causes the range of the echo to vary with doppler frequency in a direction depending on the target velo-
city and the direction of the radar frequency sweep. By alternating the radar-frequency-sweep direction
on successive transmissions, a moving target will appear at different ranges on successive pulses, while
a stationary target will appear at same range. The echo from one pulse subtracted coherently or non-
coherently from the echo of the next pulse (Fig. 5) will effectively cancel the nonmoving-target
response but not the mo'iing-target response. In this type of MTI, true range and velocity of the mov-
ing target can be estimated from the output. In addition, blind-speed problems are also eliminated
except at zero doppler, where the blind speed is desired. It is emphasized that the implementation of
the scheme shown in Fig. 5 does not require any doppler-steered pulse compressor and that only one
delay-line canceler is needed.

The relatively doppler-tolerant low-sidelobe polyphase-coded waveforms (5-71 are particularly suit-
able for range-doppler-coupled-MTI applications. Some of these codes could become palindromic with
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Fig. 4 - Regular dclay-line cancelcr, with no range-doppler coupling

DOPPLER-TOLERANT COMPESOR T I /PRF CIRCUIT
WAVEFORMNO BLIND SPEED

ZERO DOPPLER

Fig. 5 - Range-doppler-coupled MTI

real autocorrelation functions by slightly modifying the existing waveforms. For example, the PP4 code
was obtained from the P4 code by taking the first sample of the waveform half a code-element duration
after the leading edge while still sampling at the Nyquist rate. The frequency response of the single-
delay-line canceler in a range-doppler-coupled MTI employing a PP4-coded waveform is shown in Fig.
6. It is evident that blind-speed problems do not occur except at zero doppler.
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Fil. 6 - Frequency response of a two-pulse range-doppler-coupled MTI
using a PP4 code

In the event of nonmoving distributed clutter, simulation of a range-doppler-coupled MTI output
for those palindromic codes showed that the returns canceled perfectly and that no clutter residue was
obtained. It was demonstrated in the simulation that if there were moving targets in addition to the
nonmoving distributed clutter, only the target responses were presented at the MTI output. As an
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example, Figs. 7 and 8 show the responses of a target with doppler frequency 0.011B, where B is the
radar bandwidth. Figure 7 shows that the target is embedded in the clutter before cancellation, and Fig.
8 shows that the target is visible after cancellation using the PP4-coded waveform. The pulse-
compression ratio was 100 in this case. At the MT! input, the clutter-to-target power ratio was 20 dB.
At the MT! output, the oppositely range-doppler-coupled target responses were separated by two - inge
cells and were resolved in range. The separation of these two target responses indicates that th: target
velocity and the true target range lies halfway between the two responses. Consequently, parameter
estimation and subclutter visibility can both be accomplished by implementing such a range-doppler-
coupled MTI with a palindromic polyphase-coded waveform.
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C CCONCLUSIONS

It is demonstrated in the simulation that doppler resolution and clutter attenuation are not simul.
taneously available from doppler-steered pulse compressors using waveforms with thumbtack ambiguity
diagrams in a nonmoving-distributed-clutter environment. As a consequence the implementation of a
matched filter bank does not provide the capability of parameter estimation in a clutter environment.
Subsequent conventional MTI processing at each filter output port can eliminate excess clutter with
more than one transmitted pulse but has blind-speed problems.

In an MTI system, if the waveform with a thumbtack ambiguity diagram is replaced with one that
range-doppler couples and is palindromic, both parameter estimation and subclutter visibility can be
obtained without implementation of any matched filter bank.
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